Coupled 4D-variational physical and biological data assimilation in the California Current System

Hajoon Song, Christopher A. Edwards, Andrew M. Moore, and Jerome Fiechter

a Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A., hajsong@mit.edu, b Ocean Sciences Department, University of California, Santa Cruz, U.S.A.

Coupled physical and biological data assimilation is performed within the California Current System. The initial condition of physical and biological variables is estimated using the four-dimensional variational (4DVar) method under the Gaussian and lognormal error distributions assumption, respectively. Errors are assumed to be independent, yet variables are coupled by assimilation through adjoint model dynamics. Using a nutrient-phytoplankton-zooplankton-detritus (NPZD) model coupled to an ocean circulation model (the Regional Ocean Modeling System, ROMS), the coupled data assimilation procedure is evaluated in a twin experiment setting and compared to two related experiments, assimilating physical data only and biological data only. Independent assimilation of physical (biological) data reduces the root-mean-squared error of physical (biological) state variables by more than 56% (43%) on average. However, the improvement in biological (physical) state variables is less than 7% (13%). In contrast, the coupled data assimilation shows improvement in both physical and biological components by 57% and 49%, respectively, illustrating the superior performance of the coupled assimilation approach. The coupled data assimilation also recovers the coupled modes between surface physical-biological variables, while other two assimilation runs do not.