Evaluating the Fidelity of a Community Coupled Model DA System (CESM-DART)

The National Center for Atmospheric Research

6th WMO Symposium on Data Assimilation
Wednesday, October 9th 2013
Existing DART setups for CESM components

- **CAM-DART**
 - atmosphere component
 - Raeder et al. (2012), *J. Climate*

- **POP-DART**
 - ocean component
 - Karspeck et al. (2013), *J. Climate*
Defining the Terminology for our Framework

Ideal Target

Cross-component Coupled model DA

“Assimilation into a coupled model where observations in one medium are used to generate analysis increments in the other”

(from M. Rienecker, WMO CAS Workshop, Dec. 2010)
Motivation for a CDA Framework

- **Seamless prediction – days to decades**
 - unify short to long term forecasting systems
 - highly balanced coupled initial states

- **Accurate representation of short-term and long-term coupled phenomena**
 - short-term – MJO
 - extreme events – tropical cyclones

- **Improve use of near surface observational data**
 - strong initial transients in these quantities
 - capture the diurnal cycle in atmosphere-ocean interactions
Multi-component Coupled Model Data Assimilation

- Coupler exchanges fluxes and other necessary information between component models
- Several other models that are active – Sea-ice, Land-ice, River runoff, etc.
Estimated Model States

- Suite of variables from atmosphere, ocean, land and other model components
- Quantitative examination ongoing
 - need a larger timespan of runs to assess any systematic drifts
 - qualitatively fields for the first few months look ok!
Evaluating Performance in Observation Space

- Ensemble analysis provides an estimate of analysis and forecast uncertainty
 - (Top Panel) evolution of prior and posterior RMS error
 - (Bottom Panels) profile of time-averaged prior and posterior RMS error, total spread and bias relative to the actual radiosonde T observations
Multi-component Coupled Model DA

- Initial Conditions
 - 30 member ensemble
 - 20th century control run from ~1° CESM

- Atmosphere (CAM)
 - COUPLER
 - DART Atm. Obs.

- Land (CLM)
 - COUPLER
 - ensemble members

- Ocean (POP)
 - COUPLER

Time:
- 00Z
- 06Z
- 12Z
- 18Z
- 24Z

DART Atm. Obs.
- Land Obs.
- Ocean Obs.
Ocean-component Coupled Model DA

- Initial Conditions
 - 30 member ensemble
 - 20th century control run from $\sim 1^\circ$ CESM

- Atmosphere (CAM)
- Land (CLM)
- Ocean (POP)

- Ensemble members

- 00Z, 06Z, 12Z, 18Z, 24Z

- DART
- Ocean Obs.
Difference in 6-hourly Sea Surface Potential Temperature

- Large differences in the Gulf Stream
- Phase differences in tropical instability waves/shift in ITCZ
- Bias correction in SH
- Related to
 - Forcing fields
 - Ensemble spread

January 2004 to April 2004, 6-hr frames
Impact of Changes in Forcing fields

- Differences in SST corresponds to differences in surface heat flux, sea surface height → changes in wind fields
Impact of an Unconstrained Atmosphere

Evaluation in observation space of the prior and posterior RMS error and the ensemble spread

- Tropical Pacific (5S-5N, 85-105W)
In Search of MJO…

- Hypothesis: improvements to the model mean state in the multi-component case will better capture MJO signal

- Showing state of the MJO as a point in the two-dimensional phase space of Real-time Multivariate MJO Series 1 (RMM1) and Series 2 (RMM2)
 - (Top Panel) for Multi-component coupled model DA
 - (Bottom Panel) for Ocean-component coupled model DA
Ongoing Activities

- For all experiments
 - short-term: multi-year simulations, seasonal forecasting (e.g. ENSO)
 - long-term: decadal forecasting (e.g. AMOC)

- ‘True’ reference experiment
 - no data assimilation for any component
 - Challenge – instabilities develop rapidly (in fact DA stabilizes the model states)

- Improving data assimilation schemes for each individual component
 - e.g. ocean - accounting for representativeness error (poster H-p13)
 - e.g. land – model PFT, localization issues (posters F-p02, F-p05)
Summary

- Successful implementation of CESM-DART
 - multi-component coupled model framework
 - test-bed for transitioning to cross-component coupled model scheme

- Results from initial implementation
 - demonstrates differences in multi-component vs. single-component
 - demonstrates “impact” in atmosphere-ocean interaction, forcing fields at the boundary

- Community-oriented development
 - CESM model is publicly available (http://www2.cesm.ucar.edu)
 - Data Assimilation scheme (DART) is publicly available (http://www.image.ucar.edu/DARes/DART/)
 - CESM-DART codes to be released soon (later this month)
Acknowledgements

- NOAA Climate and Global Change Postdoctoral Program, Visiting Scientists Program, UCAR
- CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy
- NCAR Team - Tony Craig, Clara Deser, Jim Edwards, Peter Gent, Mitch Moncrieff, Nancy Norton, Mariana Vertenstein, Steven Yeager, and others
- Funding sources:

[Logos of NCAR, Carnegie Institution for Science, and NSF]
QUESTIONS?

abhishek@ucar.edu
CESM Model Components

- All active components (B COMPSET)
- Present day with CAM5 physics (CAM5 FV core)
- Horizontal Res: Nominal ~1
- Vertical Discretization:
 - CAM – 30 levels
 - POP – 60 levels with 10 m resolution in the upper 200 m, gradually expanding to 250 m resolution below 3000 m depth

CESM Components – High Level Diagram The coupler is in the middle and communicates with all other components (adapted from - https://summerofhpc.prace-ri.eu)
CESM Model Bias

SST

- **b40_20th_1d_b08c5cn_139jp (yrs 1981-2000)**
 - Sea surface temperature: mean = 20.11
 - **ANN**
 - Min = -0.27 Max = 29.38
 - **HadiSST (climatology)**
 - Sea surface temperature: mean = 20.31
 - Min = 0.10 Max = 29.60
 - **b40_20th_1d_b08c5cn_139jp - HadiSST (climatology)**
 - mean = -0.20 rmse = 0.97
 - Min = -5.32 Max = 8.54

Surface Stress

- **b40_20th_1d_b08c5cn_139jp (yrs 1981-2000)**
 - Surface stress: mean = 0.07
 - **ANN**
 - Min = 0.00 Max = 0.28
 - **NCEP**
 - Surface stress: mean = 0.06
 - Min = 0.00 Max = 0.25
 - **b40_20th_1d_b08c5cn_139jp - NCEP**
 - Surface stress: mean = 0.00
 - Min = -0.14 Max = 0.07
Methodological Considerations ➔ Cross-comp. CDA

- Development of coupled error covariances
 - cross-component coupled model DA
 - Challenge – demonstrate an effective localization technique, esp. relevant for near surface observational fields

- Understanding and dealing with model biases
 - bias errors in coupled models difficult to estimate, and attribute
 - working more carefully with land, sea-ice, land-ice and river runoff model components in CESM