Satellite soil moisture data assimilation into the Australian Water Resources Assessment modelling system

Luigi Renzullo ¹, Brent Henderson ², Warren Jin ², Jean-Michel Perraud ¹, Matthew Stenson ¹, Albert van Dijk ³

¹ CSIRO Land and Water
² CSIRO Computational Informatics
³ Australian National University, Fenner School

6th WMO Symposium on Data Assimilation 7 – 11 Oct 2013, University of Maryland, USA
Water Resources Information in Australia

- Commonwealth Water Act 2007
- Australian Bureau of Meteorology (BoM)
 - Mandate: "Manage Australia’s water resources information …";
 - new responsibilities; new BoM Water Division formed.
- National water accounts & assessments

- Water Information Research & Development Alliance
 - WIRADA: An R & D initiative between the BoM and CSIRO;
 - partnership of $50M over 5 years (July 2008 – June 2013)

- Australian Water Resources Assessment (AWRA) system
 - Comprehensive reconstruction of the water balance for the whole country
 - Scale and accuracy acceptable for water resources management

[Links]
- Water balance across Australia (2000-2006)
AWRA system

Australian Water Resources Assessment modelling system

- Developed CSIRO-BoM for reporting on WRA and NWA

System model components

- **AWRA Landscape model (AWRA-L)**
 - Hybrid land surface model / conceptual RR model
 - Daily time step
 - 0.05-degree resolution grid across continent
 - Top-layer (S_0), shallow root (S_s) & deep root (S_d) soil layers

- **AWRA River model (AWRA-R)**
 - Node-link model (simplified sourceRivers)

- **AWRA Groundwater model (AWRA-G)**
 - Models aquifer dynamics SW-GW processes (incl. lateral transfer between cells, SW-GW interactions, recharge from overbank flows, models impact of extraction, ..)

6th WMO Data Assimilation Symposium | Luigi Renzullo | 7-11 Oct 2013 Maryland, USA
Overall goal: Develop and deploy a modelling environment to integrate surface measurement and remote sensing data systems for comprehensive water balance

* e.g. Streamflow, water table, bore data, reservoir data;

 vegetation indices, soil moisture, land surface temperature

Specific goals of this study:

Evaluate assimilation satellite soil moisture retrievals on soil water representation in AWRA-L

* Assess active and passive remotely-sensed soil moisture retrievals constraint on AWRA-L top-layer and shallow root-zone moisture estimates.

* Evaluate modelling against *in situ* measurements & cosmic-ray data

Method summary:

Sequential updating of AWRA-L model states (soil water storages) using the Ensemble Kalman Filter (EnKF) based on perturbed forcing and triple collocation for errors on satellite soil moisture products
1. Vrije Universiteit Amsterdam (VUA) – NASA soil moisture products
 - Volumetric soil moisture (m³m⁻³)
 - 0.25° x 0.25° - NN resampling to 0.05 ° x 0.05 °
 - Top ~1-2cm soil layer

2. Technische Universität Wien (TUW) soil relative wetness products
 - Estimates derived from active microwave ASCAT backscatter signal using the change detection algorithm (Wagner et al., 1999, Rem. Sens. Environ.)
 - Surface degree of saturation (0-1)
 - 0.125° x 0.125° - NN resampling to 0.05 ° x 0.05 °
 - Top ~1-2cm soil layer

Soil moisture data sets
Pattern and magnitude of errors appear consistent with others work, e.g. Dorigo et al., 2010, HESS.

Continental error estimates: using triple collocation (CDF* matched SM obs)

- VUA – AMSR-E
- TUW – ASCAT

Relative wetness
Continental satellite DA into AWRA-L

AWRA-L Relative wetness for 7 July 2009

- Continental AWRA-L data assimilation
 - EnKF using perturbed forcing
 - multiplicative perturbation on rainfall
 - Additive perturbation on air temp and shortwave radiation
 - Details in Renzullo et al., 2013, J Hydrol. (in prep)

- Simulations over the last 13 years. (~2-day turn around)
Soil moisture assimilation

ASCAT

AMSR-E

ASCAT & AMSR-E

Top layer relative wetness

0.0 0.2 0.4 0.6 0.8 1.0

Open loop
Assimilation
Observations

Evaluation @ OzNet • CosmOz • OzFlux
Evaluation: AWRA-L top-layer SM estimation

- 45 OzNet top-layer (0-8 cm) in situ measurement sites

- Percentage relative difference between open-loop (r^0) and analysis (r^a) correlation

- Correlation between model and in situ moisture for 1 July 2007 – 31 May 2011
Evaluation: AWRA-L shallow root-zone

- 36 OzNet shallow root-zone (0-30 cm and 0-90 cm) in situ measurements
- Percentage relative difference between open-loop (r^0) and analysis (r^a) correlation
- Correlation between model and in situ moisture for 1 July 2007 – 31 May 2011
Evaluation: AWRA-L shallow root-zone

- Cumulative distribution of the **analysis increments** of the AWRA-L soil water storage states (normalised by the forecast states estimates) pooled across the OzNet site and only for those times when satellite SM were available for assimilation
Evaluation: AWRA-L shallow root-zone

- Evaluation against cosmic-ray probes (CosmOz)

![Graphs and charts showing soil moisture and correlation for Baldry, Daly, Robson, Tullochgorum, Weany, and Yanco with AWRA-L 95% ensemble range.](image)
Conclusions & future directions

- A system for continental-scale data assimilation has been developed for Australian water resources assessments
 - Currently ingest satellite soil moisture retrievals into AWRA-L
 - Modular in design can be extended to assimilate wider range of gridded data products (e.g. other SM, evapotranspiration, vegetation indices, ...)
 - Further work will focus on coupling the landscape model (AWRA-L) and river model (AWRA-R) for streamflow DA.
- EnKF method is applied pixel-wise for the whole of Australia
 - Perturbed rainfall, radiation and air temperature
 - Future work will examine spatially-varying perturbations across the continent
 - Model error will be revisited
- AWRA-L soil moisture evaluation against ground data
 - AWRA-L open-loop simulation of top- and shallow-root layer SM highly correlated with in situ (OzNet) measurements
 - Soil moisture assimilation improved AWRA-L top-layer estimation when open-loop simulations were less correlated with in situ data than satellite SM
 - AWRA-L shallow-root zone (0-30 cm) estimates improved almost always after assimilation; 0-90 cm variable (but biggest improvements when AWRA-L open-loop estimates were poor).
 - CosmOz data promising new network to extend satellite and model evaluation to variety of landscapes around Australia
- Future: SM assimilation impact on wider water balance estimation
 - E.g. evaluation of AWRA-L runoff estimates – preliminary findings showed degradation, which points to inconsistency between soil water and runoff components in AWRA-L which needs to be explored.
Thank you

CSIRO Land and Water
Luigi Renzullo
Senior Research Scientist

t +61 2 6246 5758
e Luigi.Renzullo@csiro.au