AMVs – how to make better use of them in NWP?

6th WMO International Symposium on Data Assimilation
10th October 2013
Kirsti Salonen and Niels Bormann
AMVs, what are they?

Wind observations produced by tracking clouds or water vapour features in consecutive satellite images.
Traditional interpretation

- Assumption: tracked features act as passive tracers of atmospheric flow.

- Single-level wind observations assigned to representative height
 - Cloud top for high and mid-level clouds
 - Cloud base for low level clouds
What if height assignment goes wrong?

- Dominant source of error for AMVs:
 - Built-in assumptions in the methods
 - Difficulties linking the height assignment to features dominating the tracking
 - Errors in short-range NWP forecasts used in height assignment

CASE 1: Wind shear in vertical, large error in wind speed.

CASE 2: Wind speed does not vary much with height, small error in wind speed.
Situation dependent observation errors

\([\text{Total u/v error}]^2 = [\text{Tracking error}]^2 + [\text{Error in u/v due to error in height}]^2\)

Situation dependent observation errors

\[E_{vp} = \sqrt{\sum W_i (v_i - v_n)^2} \]

\[W_i = \exp\left(-\frac{(p_i - p_n)^2}{2E_p^2}\right) \cdot dP_i \]

- \(p_i \) and \(v_i \) on model level
- \(p_n \) and \(v_n \) at observation location
- \(E_p \), error in height assignment
- \(dP_i \), layer thickness
Situation dependent observation errors

\[E_{vp} = \sqrt{\sum W_i (v_i - v_n)^2} \]
\[W_i = \exp\left(-\frac{(p_i - p_n)^2}{2E_p^2}\right) * dP_i \]

Tracking error (m/s) + \sqrt{E_p, Height error (hPa)}
Situation dependent observation errors

Total observation error (m/s)

Example: cloudy WV, high levels
Impact on analysis and forecasts

Normalised difference in the RMS error for 48-h and 72-h wind forecasts

- Tested over summer and winter periods, 1.1-31.3.2012, 1.6-31.8.2012.
- CY38r2, T511, 137 levels, 12-hour 4D-Var.
Single level or layer average?

- Typically interpreted as single-layer observations even though
 - Clouds have vertical extent
 - Radiances represent contribution of deep vertical layer when tracking clear-sky features

- Comparison to radiosonde\(^{\text{e.g. 1}}\) and lidar\(^{\text{e.g. 2}}\) observations and results from simulation framework\(^{\text{e.g. 3}}\) suggests benefits from layer averaging.

(1) Velden and Bedka, 2009: Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vector Height Attribution. JAMC, 48, 450-463.

(3) Hernandez-Carrascal and Bormann, 2013: Atmospheric Motion Vectors from Model Simulations. Part II: Interpretation as Spatial and Vertical Averages of Wind and Role of clouds. Accepted to JAMC.
Experimentation with layer averaging

- AMV assigned to representative height
 - Centred averaging
- AMV assigned to cloud top
 - Averaging below
How information is spread in vertical?

- Single observation experiment
 - First guess departure the same in all three cases

1. Single-level observation operator (black)

Boxcar layer averaging:

2. 80 hPa layer centred at the observation height (red)

3. 80 hPa layer below the observation height (blue)
What next?

• More detailed investigations with the layer averaging
 ▪ Optimal layer depth
 ▪ Layer position
 ▪ Situation dependence

• Interpretation as a single-level wind but within the cloud.

• Could model best-fit pressure statistics provide some useful information.
Summary

- AMVs are an established part of the global observing system.
- To get full benefit from AMVs to NWP, the characteristics of the observation type need to be carefully accounted for.
- Use of situation dependent observation errors leads to clear improvements in model analyses and forecasts.
- Investigations with the observation operator are on-going.