On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter

Heiner Lange and George C. Craig

Hans-Ertel-Centre for Weather Research, Data Assimilation Branch
LMU Munich
in Co-Operation with DWD, Offenbach
(Hendrik Reich, Andreas Rhodin)

WMO Symposium on DA, 08.10.2013
Limited predictability, scale-dependent

Obstacles of forecasts:

- Model error
- Initial value problem: Predictability limited by error growth in the chaotic atmospheric system
Obstacles of forecasts:

- Model error
- Initial value problem: Predictability limited by error growth in the chaotic atmospheric system

Question:

Is an ensemble forecast (a) from a fine EnKF analysis better than (b) from a coarse analysis?

Forecast window: 3 hours
Limited predictability, scale-dependent

Obstacles of forecasts:
- Model error
- Initial value problem:
 Predictability limited by error growth in the chaotic atmospheric system

Question:
Is an ensemble forecast (a) from a fine EnKF analysis better than (b) from a coarse analysis?
Forecast window: 3 hours
OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (Hunt et al., 2007)

- **Nature Run**: single cells of an elongated squall line
- **Fine Analysis R4**: single cells taken from best fitting member(s)
OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (*Hunt et al., 2007*)

- **Nature Run**: single cells of an elongated squall line
- **Fine Analysis R4**: single cells taken from best fitting member(s)
- **Coarse Analysis R16**: coarse fit from coarsely fitting member(s)
COSMO model setup

- **Domain:** 198 x 198 x 50 gridpoints
 - periodic lateral boundaries conditions
- **Resolution:** 2 km horizontally
COSMO model setup

Domain: 198 x 198 x 50 gridpoints
periodic lateral boundaries conditions

Resolution: 2 km horizontally

Initial state: Horizontally homogenous sounding,
$\text{CAPE} = 2200 \frac{J}{kg}$,
random white noise on T (0.02 K) and W (0.02 m/s)
in the boundary layer
Nature Run and Ensemble

COSMO model setup

- **Domain**: 198 x 198 x 50 gridpoints
 - periodic lateral boundaries conditions
- **Resolution**: 2 km horizontally
- **Initial state**: Horizontally homogenous sounding,
 - $\text{CAPE} = 2200 \frac{\text{J}}{\text{kg}}$,
 - random white noise on T (0.02 K) and W (0.02 $\frac{\text{m}}{\text{s}}$) in the boundary layer
- **Model**: Full COSMO physics with active radiation scheme
- **Forecast**: 8 hour spinup until convection evolves:
 - long-lived cells, lifetime $\geq 6 \text{ h}$
 - horizontal position *fully random* in ensemble
Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt et al, 2007) in KENDA

\(^a\) Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt et al, 2007) in KENDA\(^a\)
- 3 hours cycled assimilation
- 3 hours ensemble forecast

\(^a\) Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- Simulated observations of *radial wind* and *(no)-reflectivity*
- Analysis produced by LETKF (*Hunt et al, 2007*) in KENDA
- 3 hours cycled assimilation
- 3 hours ensemble forecast
- Fine assimilation scheme R4
- Coarse assimilation scheme R16

a Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)

- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)
- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance
Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)

1. 4 km Localization length
2. 2 km Observations
3. R-matrix:
 - $R_{\text{wind-obs}} = \left(5 \frac{\text{m}}{\text{s}}\right)^2$
 - $R_{\text{refl-obs}} = (20 \text{ dBZ})^2$
4. 5 min assimilation interval

Coarse Analysis Scheme (R16)

- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance

Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance
Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)
1. 4 km Localization length
2. 2 km Observations
3. \(R \)-matrix:
 - \(R_{\text{wind-obs}} = (5\, \text{m/s})^2 \)
 - \(R_{\text{refl-obs}} = (20 \, \text{dBZ})^2 \)
4. 5 min assimilation interval

- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
1. 16 km Localization length
2. 8 km SuperObservations
3. Inflated \(R \)-matrix:
 - \(R_{\text{wind-SuperObs}} = (5\, \text{m/s})^2 \)
 - \(R_{\text{refl-SuperObs}} = (20 \, \text{dBZ})^2 \)
4. 20 min assimilation interval

- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance
Assimilation Results: Nature vs. Analysis Ensemble Means

- Nature Run 01, 14 UTC
- R4 Analysis EnsMean
- R16 Analysis EnsMean

- Reflectivity (dBZ)
- Temperature (T), z = 150m
- Vertical Wind (W), z = 3500m

Distance (km):
0 50 100 150 200 250 300 350

Reflectivity (dBZ):
0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Temperature (T), z = 150m:
288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0

Vertical Wind (W), z = 3500m:
-5.0 -2.4 0.2 2.8 5.4 8.0 10.6

Heiner Lange
Fine vs. Coarse Storm Assimilation 7/14
Assimilation Results: Nature vs. Analysis Ensemble Means

Nature Run 01, 15 UTC
R4 Analysis EnsMean
R16 Analysis EnsMean

Distance (km)

Refl_Max (dBZ)

T (K), z = 150m

W (m/s), z = 3500m

Heiner Lange
Assimilation Results: Nature vs. Analysis Ensemble Means

Nature Run 01, 16 UTC
R4 Analysis EnsMean
R16 Analysis EnsMean

- Distance (km)
- Refl Max (dBZ)

T (K), z = 150m

W (m/s), z = 3500m

Heiner Lange
Fine vs. Coarse Storm Assimilation 7 / 14
Assimilation Results: Nature vs. Analysis Ensemble Means

- Nature Run 01, 17 UTC
- R4 Analysis EnsMean
- R16 Analysis EnsMean

- Refl Max (dBZ)
- T (K), z = 150m
- W (m/s), z = 3500m
Analysis Members R4

Fine Analysis R4, Realization 01, t = 17 UTC

Nature Run
Member 001
Member 013
Member 025
Member 037
Member 050

Distance (km)

Nature Run Member 001 Member 013
150 200 250 300

Distance (km)

Heiner Lange
Fine vs. Coarse Storm Assimilation
Analysis Members R16

Coarse Analysis R16, Realization 01, t = 17 UTC

Nature Run
Member 001
Member 013

Member 025
Member 037
Member 050

Heiner Lange
Fine vs. Coarse Storm Assimilation
Analysis Ensemble Distributions

Ensemble distribution where $\text{Refl}_{\text{nature}} = 40 \pm 0.5 \text{ dBZ}$

- **R4**
- **R16**
RMSE-Statistics: U, W

U - wind

W - wind

- **Red**: RMSE of Ensemble Mean
- **Blue**: RMSE of Ensemble Mean
- **Dash**: RMSE of Free-Ensemble Mean
- **Red dashed**: Spread of Ensemble
- **Blue dashed**: Spread of Ensemble
- **Dash**: Spread of Free-Ensemble
Forecast Results: Nature vs. Forecast Ensemble Means

Nature Run 01, 20 UTC
R4 Forecast EnsMean
R16 Forecast EnsMean

Distance (km)
Distance (km)
Distance (km)

Refl_Max (dBZ)

Heiner Lange
Displacement of forecast field with respect to observations, measured by the amplitude of the morphing vector field:

![DAS-DIS Displacement Score](image_url)

DAS-DIS of Refl_Max (Mean Score of Ensemble Members)

- **R4**
- **R16**

Hours: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25

DIS: 0.00, 0.05, 0.10, 0.15, 0.20
Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity.
- 3 hours of cycled assimilation followed by 3-h forecast.
Methods:
- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4
- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts
Summary

Methods:
- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4
- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts

Coarse scheme R16
- initializes equally good 3-h forecasts
- needs much less computational power
Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology
Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

Outlook

- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model
Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

Outlook

- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model

References

Hunt et al 2007
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter

H. Lange and G.C. Craig 2013
On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter
Monthly Weather Review, submitted
Rigorous Convergence vs. Relaxation

(a) $\sigma_o = 5$ dBZ

(b) $\sigma_o = 20$ dBZ