Improved Oceanic Component within the NCEP GFS
Xu Li, IMSG at EMC/NCEP/NOAA

• An SST analysis scheme has been developed within the NCEP GFS
 – SST extended to NSST (Near-Surface Sea Temperature), a T-Profile due to diurnal warming and sub-layer cooling.
 – The foundation temperature(T_f) is selected as the oceanic analysis variable.
 – NSST model developed to relate T_f and observed satellite radiance (plus CRTM) and oceanic temperature.
 – The combination of T_f and NSST profile provides the appropriate boundary condition of radiative transfer model and atmospheric forecasting model.
 – All the data are assimilated directly, including wavelength dependent satellite radiance and depth dependent in situ buys and ships sea temperature.
 – T_f is analyzed 6-hourly together with atmospheric variables by minimizing a single cost function with GSI, but without the covariance between the ocean and atmosphere.
 – Partially atmosphere-ocean coupled in prediction mode: Diurnal warming and sub-layer cooling coupled with atmospheric model every atmospheric model time step, but T_f is steady.

• The cycling runs have been done for one summer and one winter season

• Results
 – SST analysis: Improved, in terms of (O-B) statistics against buoys, such as more Gaussian, lower bias and RMS, more used data.
 – SST prediction: Improved against buoys but degraded against own analysis, since more variability introduced in the new scheme and the suppressed variability in the control run.
 – Fluxes prediction against the average of the 1st 6-hour own prediction: improved in tropics, neutral or slightly worse in Northern and Southern hemisphere, for wind stress, net heat flux, fresh water flux at air-sea interface.
 – Atmosphere prediction against own analysis: improved in tropics, neutral in higher latitude areas.

• Conclusions
 – An atmosphere-ocean partially coupled data assimilation and prediction system has been developed within the NCEP GFS.
 – The results are encouraging.

• Fully Coupled data assimilation (future)
 – Strongly coupling: the combination of NSST and the NCEP CFS
 – Atmosphere-ocean convariance with Hybrid EnKF